
Methodology for the formal verification of
temporal properties for real-time safety-
critical applications based on logical time

PhD Defense of Fabien Siron
Paris, December 11, 2023

Pr. Reinhard von Hanxleden, Rapporteur
Pr. Pierre-Loic Garoche, Rapporteur
Dr. Timothy Bourke, Examinateur
Dr. Dumitru Potop-Butucaru, Directeur
Dr. Robert de Simone, Co-directeur
Drs. D. Chabrol & A. Methni, Encadrants industriels



Safety-critical real-time systems

In this work, we consider systems that are:
• Safety-critical: failure may have an impact on the system’s safety
• Real-time (and time-safety): system’s correctness (and thus its overall safety)

depends on a set of timing constraints

Typical example in the avionics domain: the control
system of an aircraft engine (FADEC)

1



Formal design for real-time systems

Multiform Logical Time: Deal with a formal abstraction of time through logical
timing constraints dictated by high-level requirements and independant from
hardware platform.

Typical methodology:
1. Logical Time Design: Specification & Requirements

– Refine timing requirements to produce a program based only on logical time
constraints.

2. Physical Time Design: Implementation
– Add physical time platform provisions (e.g., WCET) and ensure that logical time

constraints can be satisfied.

. We focus on the Logical Time Design phase.

2



Formal design for real-time systems

Multiform Logical Time: Deal with a formal abstraction of time through logical
timing constraints dictated by high-level requirements and independant from
hardware platform.

Typical methodology:
1. Logical Time Design: Specification & Requirements

– Refine timing requirements to produce a program based only on logical time
constraints.

2. Physical Time Design: Implementation
– Add physical time platform provisions (e.g., WCET) and ensure that logical time

constraints can be satisfied.

. We focus on the Logical Time Design phase.

2



Formal design for real-time systems

Multiform Logical Time: Deal with a formal abstraction of time through logical
timing constraints dictated by high-level requirements and independant from
hardware platform.

Typical methodology:
1. Logical Time Design: Specification & Requirements

– Refine timing requirements to produce a program based only on logical time
constraints.

2. Physical Time Design: Implementation
– Add physical time platform provisions (e.g., WCET) and ensure that logical time

constraints can be satisfied.

. We focus on the Logical Time Design phase.

2



Formal design for real-time systems

Multiform Logical Time: Deal with a formal abstraction of time through logical
timing constraints dictated by high-level requirements and independant from
hardware platform.

Typical methodology:
1. Logical Time Design: Specification & Requirements

– Refine timing requirements to produce a program based only on logical time
constraints.

2. Physical Time Design: Implementation
– Add physical time platform provisions (e.g., WCET) and ensure that logical time

constraints can be satisfied.

. We focus on the Logical Time Design phase.

2



Formal design for real-time systems
Logical timing constraints rely on logical clocks to express time.
• Sequence of specific instants to abstract a specific time base.
• Used to replace physical dates by logical sequencing.1

#0 #1 #2 #3 #4 #5
Logical clock

Two main cases of multi-clock systems:
1. Mono-Source: all logical clocks are derived from a unique global clock source.
2. Multi-Source: logical clocks might rely on multiple independant clock sources.

. In practice, most industrial systems fall in the first category due to safety
considerations. However, the second one has also interesting use-cases (e.g.,
automotive Powertrain [5]).

1
Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Communications ACM (1978).3



Formal design for real-time systems
Logical timing constraints rely on logical clocks to express time.
• Sequence of specific instants to abstract a specific time base.
• Used to replace physical dates by logical sequencing.1

#0 #1 #2 #3 #4 #5
Logical clock

Two main cases of multi-clock systems:
1. Mono-Source: all logical clocks are derived from a unique global clock source.

2. Multi-Source: logical clocks might rely on multiple independant clock sources.

. In practice, most industrial systems fall in the first category due to safety
considerations. However, the second one has also interesting use-cases (e.g.,
automotive Powertrain [5]).

1
Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Communications ACM (1978).3



Formal design for real-time systems
Logical timing constraints rely on logical clocks to express time.
• Sequence of specific instants to abstract a specific time base.
• Used to replace physical dates by logical sequencing.1

#0 #1 #2 #3 #4 #5
Logical clock

Two main cases of multi-clock systems:
1. Mono-Source: all logical clocks are derived from a unique global clock source.
2. Multi-Source: logical clocks might rely on multiple independant clock sources.

. In practice, most industrial systems fall in the first category due to safety
considerations. However, the second one has also interesting use-cases (e.g.,
automotive Powertrain [5]).

1
Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Communications ACM (1978).3



Formal design for real-time systems
Logical timing constraints rely on logical clocks to express time.
• Sequence of specific instants to abstract a specific time base.
• Used to replace physical dates by logical sequencing.1

#0 #1 #2 #3 #4 #5
Logical clock

Two main cases of multi-clock systems:
1. Mono-Source: all logical clocks are derived from a unique global clock source.
2. Multi-Source: logical clocks might rely on multiple independant clock sources.

. In practice, most industrial systems fall in the first category due to safety
considerations. However, the second one has also interesting use-cases (e.g.,
automotive Powertrain [5]).

1
Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Communications ACM (1978).3



Industrial Context
ASTERIOS technology:
• Software tool suite dedicated to the design and integration of safety-critical

systems
• Created by the CEA research institute 2 (from 90’s to 2011, formerly Oasis3):

. Used for modern nuclear plant control systems
• Produced by the Krono-Safe company (since 2011):

. Now renamed Asterios Technologies due to the takeover by Safran in 2023.

The PsyC language:
• Parallel SYnchronous dialect of the C language
• Fully integrated compilation with an in-house real-time kernel

2 French Alternative Energies and Atomic Energy Commission

3
Stéphane Louise et al. “The OASIS kernel: A framework for high dependability
real-time systems”. In: HASE. IEEE. 2011.4



Industrial Context
ASTERIOS technology:
• Software tool suite dedicated to the design and integration of safety-critical

systems
• Created by the CEA research institute 2 (from 90’s to 2011, formerly Oasis3):

. Used for modern nuclear plant control systems
• Produced by the Krono-Safe company (since 2011):

. Now renamed Asterios Technologies due to the takeover by Safran in 2023.

The PsyC language:
• Parallel SYnchronous dialect of the C language
• Fully integrated compilation with an in-house real-time kernel

2 French Alternative Energies and Atomic Energy Commission

3
Stéphane Louise et al. “The OASIS kernel: A framework for high dependability
real-time systems”. In: HASE. IEEE. 2011.4



Problem statement

Objectives:

1. Define semantics foundations for the PsyC language based on existing
logical time approaches.

2. Define a formal verification methodology for the PsyC language based on
the defined semantics foundations.

5



Problem statement

Objectives:

1. Define semantics foundations for the PsyC language based on existing
logical time approaches.

2. Define a formal verification methodology for the PsyC language based on
the defined semantics foundations.

5



Proposed Methodology: contributions

Synchronous Logical
Execution Time

program in PsyC. 2

CCSL encoding of
timing requirements

→ Synchronizations.
→ Causality.
→ Latencies (including end-to-end).

4.1

Synchronous Semantics
→ Synchronous expansion of durations.
→ Translation to Esterel.
→ Yield a “small-step” operational
semantics. 3.2

Native Semantics
→ Preservation of durations.
→ Defined as a “big-step” operational
semantics. 3.1

Observational
equivalence 3.3

Verification: multi-source case
→ Symbolic circuit encoding.
→ Symbolic model-checking. 4.2

Verification: mono-source case
→ Timed abstraction using durations.
→ Symbolic model-checking. 4.3

6



Proposed Methodology: contributions

Synchronous Logical
Execution Time

program in PsyC. 2

CCSL encoding of
timing requirements

→ Synchronizations.
→ Causality.
→ Latencies (including end-to-end).

4.1

Synchronous Semantics
→ Synchronous expansion of durations.
→ Translation to Esterel.
→ Yield a “small-step” operational
semantics. 3.2

Native Semantics
→ Preservation of durations.
→ Defined as a “big-step” operational
semantics. 3.1

Observational
equivalence 3.3

Verification: multi-source case
→ Symbolic circuit encoding.
→ Symbolic model-checking. 4.2

Verification: mono-source case
→ Timed abstraction using durations.
→ Symbolic model-checking. 4.3

6



Proposed Methodology: contributions

Synchronous Logical
Execution Time

program in PsyC. 2

CCSL encoding of
timing requirements

→ Synchronizations.
→ Causality.
→ Latencies (including end-to-end).

4.1

Synchronous Semantics
→ Synchronous expansion of durations.
→ Translation to Esterel.
→ Yield a “small-step” operational
semantics. 3.2

Native Semantics
→ Preservation of durations.
→ Defined as a “big-step” operational
semantics. 3.1

Observational
equivalence 3.3

Verification: multi-source case
→ Symbolic circuit encoding.
→ Symbolic model-checking. 4.2

Verification: mono-source case
→ Timed abstraction using durations.
→ Symbolic model-checking. 4.3

6



Proposed Methodology: contributions

Synchronous Logical
Execution Time

program in PsyC. 2

CCSL encoding of
timing requirements

→ Synchronizations.
→ Causality.
→ Latencies (including end-to-end).

4.1

Synchronous Semantics
→ Synchronous expansion of durations.
→ Translation to Esterel.
→ Yield a “small-step” operational
semantics. 3.2

Native Semantics
→ Preservation of durations.
→ Defined as a “big-step” operational
semantics. 3.1

Observational
equivalence 3.3

Verification: multi-source case
→ Symbolic circuit encoding.
→ Symbolic model-checking. 4.2

Verification: mono-source case
→ Timed abstraction using durations.
→ Symbolic model-checking. 4.3

6



Proposed Methodology: contributions

Synchronous Logical
Execution Time

program in PsyC. 2

CCSL encoding of
timing requirements

→ Synchronizations.
→ Causality.
→ Latencies (including end-to-end).

4.1

Synchronous Semantics
→ Synchronous expansion of durations.
→ Translation to Esterel.
→ Yield a “small-step” operational
semantics. 3.2

Native Semantics
→ Preservation of durations.
→ Defined as a “big-step” operational
semantics. 3.1

Observational
equivalence 3.3

Verification: multi-source case
→ Symbolic circuit encoding.
→ Symbolic model-checking. 4.2

Verification: mono-source case
→ Timed abstraction using durations.
→ Symbolic model-checking. 4.3

6



Proposed Methodology: contributions

Synchronous Logical
Execution Time

program in PsyC. 2

CCSL encoding of
timing requirements

→ Synchronizations.
→ Causality.
→ Latencies (including end-to-end).

4.1

Synchronous Semantics
→ Synchronous expansion of durations.
→ Translation to Esterel.
→ Yield a “small-step” operational
semantics. 3.2

Native Semantics
→ Preservation of durations.
→ Defined as a “big-step” operational
semantics. 3.1

Observational
equivalence 3.3

Verification: multi-source case
→ Symbolic circuit encoding.
→ Symbolic model-checking. 4.2

Verification: mono-source case
→ Timed abstraction using durations.
→ Symbolic model-checking. 4.3

6



Proposed Methodology: contributions

Synchronous Logical
Execution Time

program in PsyC. 2

CCSL encoding of
timing requirements

→ Synchronizations.
→ Causality.
→ Latencies (including end-to-end).

4.1

Synchronous Semantics
→ Synchronous expansion of durations.
→ Translation to Esterel.
→ Yield a “small-step” operational
semantics. 3.2

Native Semantics
→ Preservation of durations.
→ Defined as a “big-step” operational
semantics. 3.1

Observational
equivalence 3.3

Verification: multi-source case
→ Symbolic circuit encoding.
→ Symbolic model-checking. 4.2

Verification: mono-source case
→ Timed abstraction using durations.
→ Symbolic model-checking. 4.3

6



Outline
1. General context

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET
2.2 PsyC overview as an sLET formalism

3. PsyC Language and Semantics
3.1 PsyC native (big-step) semantics
3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case

5. Conclusion and Perspectives
7



Outline

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET
2.2 PsyC overview as an sLET formalism

8



The Synchronous-Reactive approach

Long task

Fast task

Figure: Synchronous-Reactive approach4

. Each reaction is triggered by the instants of a logical clock

. Synchronous communication model

4
Albert Benveniste et al. “The Synchronous Languages 12 Years Later”. In: Pro-
ceedings of the IEEE 91 (2003).9



The Synchronous-Reactive approach
Long task

Fast task

Real-Time Schedule

Figure: Synchronous-Reactive approach5

. Each reaction is triggered by the instants of a logical clock

. Synchronous communication model

. The synchronous hypothesis states that each computation should terminate
before the next tick of a global base clock

5
Albert Benveniste et al. “The Synchronous Languages 12 Years Later”. In: Pro-
ceedings of the IEEE 91 (2003).10



The Synchronous-Reactive approach

é

Long task

Fast task

Real-Time Schedule

Figure: Synchronous-Reactive approach6

. Each reaction is triggered by the instants of a logical clock

. Synchronous communication model

. The synchronous hypothesis states that each computation should terminate
before the next tick of a global base clock

6
Albert Benveniste et al. “The Synchronous Languages 12 Years Later”. In: Pro-
ceedings of the IEEE 91 (2003).11



The Logical Execution Time approach

Long task

Fast task

Schedule

Figure: Logical Execution Time approach7

. Computation is abstracted by a specified constant duration based on a unique
chronometrical time base (no multiple logical clocks)

. Delayed communication model

7
Christoph Kirsch and Ana Sokolova. “The Logical Execution Time Paradigm”. In:
Advances in Real-Time Systems. 2012.12



The Logical Execution Time approach

E E E EE E E E

Long task

Fast task

Real-time Schedule

Figure: Logical Execution Time approach8

. Computation is abstracted by a specified constant duration based on a unique
chronometrical time base (no multiple logical clocks)

. Delayed communication model

. Real-time analysis based on preemptive scheduling

8
Christoph Kirsch and Ana Sokolova. “The Logical Execution Time Paradigm”. In:
Advances in Real-Time Systems. 2012.13



A synchronous generalization of LET

Synchronous-Reactive Logical Execution Time
Modeling Logical clocks Logical intervals
Communication Synchronous Delayed
Implementation Synchronous hypothesis Relaxed synchronous hypothesis9

Languages Esterel, Lustre Giotto, TDL
PsyC

Synchronous LET extends LET with logical clock synchronisation

9
Adrian Curic. “Implementing Lustre programs on distributed platforms with real-
time constrains”. PhD thesis. Université Joseph Fourier, Grenoble, France, 2005.14



A synchronous generalization of LET

in0 in1 in2 in3

out0 out1 out2 out3

Clock A

Clock B

Synchronous
LET task

Figure: Synchronous Logical Execution Time approach

. Both computation triggering and duration instants are modeled respectively to
logical clock ticks

. Communication is delayed similarly to LET

. Published at ERTS 202210

10
Fabien Siron et al. “The synchronous Logical Execution Time paradigm”. In:
ERTS 2022 - Embedded Real Time Systems. Toulouse, France, June 2022.15



A synchronous generalization of LET
Related formalisms:

1. xGiotto [8] extends LET with events :
– In principle, both triggering and duration can be modeled by events;
– However, in practice, xGiotto relies on event scoping to encode implicitely

inter-arrival time.

2. Lingua Franca [12] is based on a multiform logical time framework called
Tagged Signal Model :

– Actors computations are triggered by logical tags
– LET can be modeled using delays between dataflow actors11:

a.out -> b.in after X ms
– However, those delays rely on a chronometrical time base, not tags.

11

Edward A Lee and Marten Lohstroh. “Generalizing Logical Execution Time”. In:
Principles of Systems Design: Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday. Springer, 2022, pp. 160–181.16



A synchronous generalization of LET
Related formalisms:

1. xGiotto [8] extends LET with events :
– In principle, both triggering and duration can be modeled by events;
– However, in practice, xGiotto relies on event scoping to encode implicitely

inter-arrival time.
2. Lingua Franca [12] is based on a multiform logical time framework called

Tagged Signal Model :
– Actors computations are triggered by logical tags
– LET can be modeled using delays between dataflow actors11:

a.out -> b.in after X ms
– However, those delays rely on a chronometrical time base, not tags.

11

Edward A Lee and Marten Lohstroh. “Generalizing Logical Execution Time”. In:
Principles of Systems Design: Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday. Springer, 2022, pp. 160–181.16



Outline

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET
2.2 PsyC overview as an sLET formalism

17



PsyC overview: clocks
PsyC defines two types of clocks:

. source, which are source clocks

. clock, which are periodically refined
clocks (with period and offset)

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;
clock c40_20 = 2 * c20 + 1;
// similar to 40 * realtime + 20

realtime

c20

c50

c40 20

18



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: synchronization
PsyC defines a dedicated synchronization
statement:

. advance awaits for a specified number
of clock ticks

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

realtime

c20

c50

GNC Task

advance 2

with c20

advance 1

with c50

advance 2

with c20

advance 1

with c50

19



PsyC overview: agents
A PsyC agent defines:
• a task name;
• inputs (consult) and outputs (display);
• a looping body containing C code

extended with advance statements.

realtime

c20

c50

GNC

0 40 50 80 100

GNC(sensors) GNC(sensors)

. Hypothesis: all execution paths should
be constrained by an advance.

source realtime;
clock c20 = 20 * realtime;
clock c50 = 50 * realtime;

agent GNC {
/* inputs*/
consult sensors, mode;
/* outputs */
display order;
body { /* infinite loop */

if (mode == NOMINAL) {
order = GNC(sensors);
advance 2 with c20;

}
advance 1 with c50;

}
}

20



PsyC overview: communication

PsyC inter-task communication is done
through dedicated temporal variables:
• One writer but multiple possible readers;
• Data is persistent;
• Values are sampled according to a clock.

/* ... */
temporal float order = 0.0f with c20;

agent GNC { /* ... */ }
agent FAST { /* ... */ }

c20

GNC

order

FAST

GNC(sensors) GNC(sensors)

21



Outline
1. General context

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET
2.2 PsyC overview as an sLET formalism

3. PsyC Language and Semantics
3.1 PsyC native (big-step) semantics
3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case

5. Conclusion and Perspectives
22



Outline

3. PsyC Language and Semantics
3.1 PsyC native (big-step) semantics
3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

23



Native (or big-step) Semantics
Based on structural operational semantics approach, for individual agents:

E , ag ===⇒n with s E ′, ag ′

with ag , ag ′ agent term, E , E ′ environments and n × s logical duration (extended on
source clock).

For individual agents, very classical rules but temporal rule for advance statement12:

E , advance n with c ===⇒n×Π(c)−dc with Source(c) E , nothing

Where dc denotes the corresponding clock state according to its period and Π(c) its
absolute period.

12
Fabien Siron et al. Formal Semantics of the PsyC language. Research Report.
INRIA Sophia Antipolis - Méditerranée (France), 2022.24



Native (or big-step) Semantics
Based on structural operational semantics approach, for individual agents:

E , ag ===⇒n with s E ′, ag ′

with ag , ag ′ agent term, E , E ′ environments and n × s logical duration (extended on
source clock).

For individual agents, very classical rules but temporal rule for advance statement12:

E , advance n with c ===⇒n×Π(c)−dc with Source(c) E , nothing

Where dc denotes the corresponding clock state according to its period and Π(c) its
absolute period.

12
Fabien Siron et al. Formal Semantics of the PsyC language. Research Report.
INRIA Sophia Antipolis - Méditerranée (France), 2022.24



Native (or big-step) Semantics
Classical synchronous composition cannot be used directly as agents do not have a
common projection.

. Hence, we consider global states, for synchronization, along with intermediate
states, due to the projection of global states from other agents.

Then, agent composition can be split in two cases:
1. Mono-Source:

. Every transition is now a partial interval generated
by the agent projection. At each state,
Nprogram = min(Nag1

,Nag2
, . . .), similar to Oasis

synchronized product 13

2. Multi-Source:
. More complex due to multiple source interleaving

GNC

GNC ′

Fast

Fast1

Fast2

Fast3

[GNC,Fast]

[GNC @20, Fast]

[GNC @10, Fast]

[GNC,Fast]

10ms

10ms

10ms

10ms

10ms

10ms

30ms

13
(Christophe Aussagues and Vincent David. “A method and a technique to model

and ensure timeliness in safety critical real-time systems”. In: ICECCS. 1998)25



Native (or big-step) Semantics
Classical synchronous composition cannot be used directly as agents do not have a
common projection.

. Hence, we consider global states, for synchronization, along with intermediate
states, due to the projection of global states from other agents.

Then, agent composition can be split in two cases:
1. Mono-Source:

. Every transition is now a partial interval generated
by the agent projection. At each state,
Nprogram = min(Nag1

,Nag2
, . . .), similar to Oasis

synchronized product 13

2. Multi-Source:
. More complex due to multiple source interleaving

GNC

GNC ′

Fast

Fast1

Fast2

Fast3

[GNC,Fast]

[GNC @20, Fast]

[GNC @10, Fast]

[GNC,Fast]

10ms

10ms

10ms

10ms

10ms

10ms

30ms

13
(Christophe Aussagues and Vincent David. “A method and a technique to model

and ensure timeliness in safety critical real-time systems”. In: ICECCS. 1998)25



Outline

3. PsyC Language and Semantics
3.1 PsyC native (big-step) semantics
3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

26



Synchronous (or small-step) Semantics
A simpler semantics can be defined by translation to a Synchronous-Reactive
language, Esterel. Translation principle:

• All control statements can be translated with similar constructs in Esterel
• advance statement is translated by the Esterel synchronization statement

followed by the display of temporal variables.
private_variable := f(...);
...
await n c;
emit temporal(private_variables);

. Durations are not preserved in the semantics as Esterel yields atomic semantics
transitions:

p, data
Out
−−−−�

In
p′, data′

27



Synchronous (or small-step) Semantics
A simpler semantics can be defined by translation to a Synchronous-Reactive
language, Esterel. Translation principle:

• All control statements can be translated with similar constructs in Esterel
• advance statement is translated by the Esterel synchronization statement

followed by the display of temporal variables.
private_variable := f(...);
...
await n c;
emit temporal(private_variables);

. Durations are not preserved in the semantics as Esterel yields atomic semantics
transitions:

p, data
Out
−−−−�

In
p′, data′

27



Synchronous (or small-step) Semantics
A simpler semantics can be defined by translation to a Synchronous-Reactive
language, Esterel.

Example:

body { /* infinite loop */
if (mode == NOMINAL) {

orders = GNC_step(sensors);
advance 2 with c20;

}
advance 1 with c50;

}

PsyC agent example

loop

end loop

Esterel agent translation

28



Synchronous (or small-step) Semantics
A simpler semantics can be defined by translation to a Synchronous-Reactive
language, Esterel.

Example:

body { /* infinite loop */
if (mode == NOMINAL) {

orders = GNC_step(sensors);
advance 2 with c20;

}
advance 1 with c50;

}

PsyC agent example

loop
if ?mode = NOMINAL then

end if;
await 1 c50;

end loop

Esterel agent translation

29



Synchronous (or small-step) Semantics
A simpler semantics can be defined by translation to a Synchronous-Reactive
language, Esterel.

Example:

body { /* infinite loop */
if (mode == NOMINAL) {

orders = GNC_step(sensors);
advance 2 with c20;

}
advance 1 with c50;

}

PsyC agent example

loop
if ?mode = NOMINAL then
private_orders := GNC_step(?sensors);
await 2 c20;
emit orders(private_orders);

end if;
await 1 c50;

end loop

Esterel agent translation

30



Outline

3. PsyC Language and Semantics
3.1 PsyC native (big-step) semantics
3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

31



Equivalence relation
Theorem (equivalence)
Assuming source clock always present (no stuttering), for individual agents:

Ag===⇒n×sAg ′ iff P0−−�P1 . . . −−� Pn︸ ︷︷ ︸
n times

assuming Ag ≈ P0, we have Ag ′ ≈ Pn (term and data equivalence)

Both semantics are observationally equivalent on the interval boundaries at the agent
level.

. All properties depending only on (global) states in the synchronous semantics is
preserved on the native semantics. Published in TCRS 202314.

14
Fabien Siron et al. “Semantics fondations of PsyC based on synchronous Logical
Execution Time”. In: TCRS 2023. San Antonio, Texas, U.S.A., May 2023.32



Outline
1. General context

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET
2.2 PsyC overview as an sLET formalism

3. PsyC Language and Semantics
3.1 PsyC native (big-step) semantics
3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case

5. Conclusion and Perspectives
33



Outline

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case

34



Specifying requirements: motivation

Motivation for verification activities:
• PsyC allows for the modeling of timing constraints inside agents.
• However, high-level timing requirements also concern timing constraints across

multiple agents (e.g., synchronizations, latencies …).

Multiple possible formalisms to specify those timing requirements:
• Temporal Logic: convential logic with temporal operators (next, always …)
• Contracts and Observers: predicates on assumptions (“assume”) and guarantees
• Clock Constraint Specification Language: constraint predicates between clocks

35



Specifying requirements: motivation

Motivation for verification activities:
• PsyC allows for the modeling of timing constraints inside agents.
• However, high-level timing requirements also concern timing constraints across

multiple agents (e.g., synchronizations, latencies …).

Multiple possible formalisms to specify those timing requirements:
• Temporal Logic: convential logic with temporal operators (next, always …)
• Contracts and Observers: predicates on assumptions (“assume”) and guarantees
• Clock Constraint Specification Language: constraint predicates between clocks

35



Specifying requirements: motivation

Motivation for verification activities:
• PsyC allows for the modeling of timing constraints inside agents.
• However, high-level timing requirements also concern timing constraints across

multiple agents (e.g., synchronizations, latencies …).

Multiple possible formalisms to specify those timing requirements:
• Temporal Logic: convential logic with temporal operators (next, always …)
• Contracts and Observers: predicates on assumptions (“assume”) and guarantees
• Clock Constraint Specification Language: constraint predicates between clocks

36



Clock Constraint Specification Language

CCSL is a specification language based on clock constraints15:
• A CCSL clock is (still) a sequence of ticks (or instants);

• CCSL constraints (or relations) constrain the tick occurence between multiple
clocks:

– e.g. isPeriodicOn, 4 (precedes) …
• CCSL expressions build new clocks from existing ones:

– e.g. sampledOn, DelayFor …

15
Charles André. Syntax and semantics of the clock constraint specification language
(CCSL). Tech. rep. INRIA, 2009.37



Clock Constraint Specification Language

CCSL is a specification language based on clock constraints15:
• A CCSL clock is (still) a sequence of ticks (or instants);
• CCSL constraints (or relations) constrain the tick occurence between multiple

clocks:
– e.g. isPeriodicOn, 4 (precedes) …

• CCSL expressions build new clocks from existing ones:
– e.g. sampledOn, DelayFor …

15
Charles André. Syntax and semantics of the clock constraint specification language
(CCSL). Tech. rep. INRIA, 2009.37



Clock Constraint Specification Language

CCSL is a specification language based on clock constraints15:
• A CCSL clock is (still) a sequence of ticks (or instants);
• CCSL constraints (or relations) constrain the tick occurence between multiple

clocks:
– e.g. isPeriodicOn, 4 (precedes) …

• CCSL expressions build new clocks from existing ones:
– e.g. sampledOn, DelayFor …

15
Charles André. Syntax and semantics of the clock constraint specification language
(CCSL). Tech. rep. INRIA, 2009.37



Specifying requirements: basic timing requirements
Description of basic timing requirements inspired from TADL216 and AUTOSAR
timing extensions:
• Repetition requirement: period between successive instants

– c isPeriodicOn realtime period n where n ∈ N∗∗ (Periodicity)

• Synchronization requirements: temporal invariants
– c1 ≡ c2 (Synchronization)
– c1 # c2 (Exclusion)

• Causality requirements: causal instant relations
– c1 ∼ c2 (Alternation)

• Delay requirements: delay between stimuli and response clocks
– response ≺ (stimuli isDelayedFor n on realtime) where n ∈ N∗ (Delay)

16

Marie-Agnès Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock Au-
tomotive Systems: The Timing Augmented Description Language V2”. In: IEEE
17th ICECCS. 2012.38



Specifying requirements: basic timing requirements
Description of basic timing requirements inspired from TADL216 and AUTOSAR
timing extensions:
• Repetition requirement: period between successive instants

– c isPeriodicOn realtime period n where n ∈ N∗∗ (Periodicity)
• Synchronization requirements: temporal invariants

– c1 ≡ c2 (Synchronization)
– c1 # c2 (Exclusion)

• Causality requirements: causal instant relations
– c1 ∼ c2 (Alternation)

• Delay requirements: delay between stimuli and response clocks
– response ≺ (stimuli isDelayedFor n on realtime) where n ∈ N∗ (Delay)

16

Marie-Agnès Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock Au-
tomotive Systems: The Timing Augmented Description Language V2”. In: IEEE
17th ICECCS. 2012.38



Specifying requirements: basic timing requirements
Description of basic timing requirements inspired from TADL216 and AUTOSAR
timing extensions:
• Repetition requirement: period between successive instants

– c isPeriodicOn realtime period n where n ∈ N∗∗ (Periodicity)
• Synchronization requirements: temporal invariants

– c1 ≡ c2 (Synchronization)
– c1 # c2 (Exclusion)

• Causality requirements: causal instant relations
– c1 ∼ c2 (Alternation)

• Delay requirements: delay between stimuli and response clocks
– response ≺ (stimuli isDelayedFor n on realtime) where n ∈ N∗ (Delay)

16

Marie-Agnès Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock Au-
tomotive Systems: The Timing Augmented Description Language V2”. In: IEEE
17th ICECCS. 2012.38



Specifying requirements: basic timing requirements
Description of basic timing requirements inspired from TADL216 and AUTOSAR
timing extensions:
• Repetition requirement: period between successive instants

– c isPeriodicOn realtime period n where n ∈ N∗∗ (Periodicity)
• Synchronization requirements: temporal invariants

– c1 ≡ c2 (Synchronization)
– c1 # c2 (Exclusion)

• Causality requirements: causal instant relations
– c1 ∼ c2 (Alternation)

• Delay requirements: delay between stimuli and response clocks
– response ≺ (stimuli isDelayedFor n on realtime) where n ∈ N∗ (Delay)

16

Marie-Agnès Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock Au-
tomotive Systems: The Timing Augmented Description Language V2”. In: IEEE
17th ICECCS. 2012.38



Specifying requirements: end-to-end requirements
GNC

order

FAST

GNC(sensors) GNC(sensors)

Delay between two instants across a functional chain of specific task instants
p1, p2, . . . , pn for tasks t1, t2, . . . , tn where p i subclock t i :

• First, specify multiple propagation paths, function chains:
– p i

display 4 p i+1
consult (Causality)

– p i+1
consult ≺ (p i

displaysampledOn t i
display ) (Consistency)

– p i+1
consult 4 (p i

displaysampledOn t i+1
consult) (First17)

• Then, use delay requirements on individual data propagation

17
Nico Feiertag et al. “A compositional framework for end-to-end path delay calcu-
lation of automotive systems under different path semantics”. In: RTSS. 2009.39



Specifying requirements: end-to-end requirements
GNC

order

FAST

GNC(sensors) GNC(sensors)

Delay between two instants across a functional chain of specific task instants
p1, p2, . . . , pn for tasks t1, t2, . . . , tn where p i subclock t i :

• First, specify multiple propagation paths, function chains:
– p i

display 4 p i+1
consult (Causality)

– p i+1
consult ≺ (p i

displaysampledOn t i
display ) (Consistency)

– p i+1
consult 4 (p i

displaysampledOn t i+1
consult) (First17)

• Then, use delay requirements on individual data propagation

17
Nico Feiertag et al. “A compositional framework for end-to-end path delay calcu-
lation of automotive systems under different path semantics”. In: RTSS. 2009.39



Specifying requirements: end-to-end requirements
GNC

order

FAST

GNC(sensors) GNC(sensors)

Delay between two instants across a functional chain of specific task instants
p1, p2, . . . , pn for tasks t1, t2, . . . , tn where p i subclock t i :

• First, specify multiple propagation paths, function chains:
– p i

display 4 p i+1
consult (Causality)

– p i+1
consult ≺ (p i

displaysampledOn t i
display ) (Consistency)

– p i+1
consult 4 (p i

displaysampledOn t i+1
consult) (First17)

• Then, use delay requirements on individual data propagation

17
Nico Feiertag et al. “A compositional framework for end-to-end path delay calcu-
lation of automotive systems under different path semantics”. In: RTSS. 2009.39



Specifying requirements: end-to-end requirements
GNC

order

FAST

GNC(sensors) GNC(sensors)

Delay between two instants across a functional chain of specific task instants
p1, p2, . . . , pn for tasks t1, t2, . . . , tn where p i subclock t i :

• First, specify multiple propagation paths, function chains:
– p i

display 4 p i+1
consult (Causality)

– p i+1
consult ≺ (p i

displaysampledOn t i
display ) (Consistency)

– p i+1
consult 4 (p i

displaysampledOn t i+1
consult) (First17)

• Then, use delay requirements on individual data propagation

17
Nico Feiertag et al. “A compositional framework for end-to-end path delay calcu-
lation of automotive systems under different path semantics”. In: RTSS. 2009.39



Synchronous observer based verification
CCSL can be used to model synchronous
observers 18:
• CCSL expressions are translated to

Esterel (generators);

• CCSL constraints are translated to
Esterel (observers);

• Verification can be performed on
the composition of an Esterel
program and a set of translated
CCSL expressions/constraints.

. This strategy can be used for both assume and guarantee patterns

18
(Charles André. Verification of clock constraints: CCSL Observers in Esterel.

Tech. rep. INRIA, 2010)40



Synchronous observer based verification
CCSL can be used to model synchronous
observers 18:
• CCSL expressions are translated to

Esterel (generators);
• CCSL constraints are translated to

Esterel (observers);

• Verification can be performed on
the composition of an Esterel
program and a set of translated
CCSL expressions/constraints.

. This strategy can be used for both assume and guarantee patterns

18
(Charles André. Verification of clock constraints: CCSL Observers in Esterel.

Tech. rep. INRIA, 2010)40



Synchronous observer based verification
CCSL can be used to model synchronous
observers 18:
• CCSL expressions are translated to

Esterel (generators);
• CCSL constraints are translated to

Esterel (observers);
• Verification can be performed on

the composition of an Esterel
program and a set of translated
CCSL expressions/constraints.

. This strategy can be used for both assume and guarantee patterns

18
(Charles André. Verification of clock constraints: CCSL Observers in Esterel.

Tech. rep. INRIA, 2010)40



Synchronous observer based verification
CCSL can be used to model synchronous
observers 18:
• CCSL expressions are translated to

Esterel (generators);
• CCSL constraints are translated to

Esterel (observers);
• Verification can be performed on

the composition of an Esterel
program and a set of translated
CCSL expressions/constraints.

. This strategy can be used for both assume and guarantee patterns

18
(Charles André. Verification of clock constraints: CCSL Observers in Esterel.

Tech. rep. INRIA, 2010)40



Outline

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case

41



Verification techniques

Overview of verification techniques:
• Enumerative: explicit computation/traversal of the state-space
• Timed Automata (TA): encoding of real-time constraints in automata using

watches (called “clocks”)
• Binary Decision Diagram (BDD): symbolic encoding of set of states using

BDD data structures
• Bounded Model-Checking (BMC): symbolic (and bounded) unfolding of the

state-space using SAT solvers
• K-Induction and Interpolation: techniques to solve the completeness issue of

BMC using SAT solvers

42



Verification methodology

Global methodology:
1. Translation of CCSL requirements into Esterel;

2. Translation of PsyC into Esterel;
3. Re-use Esterel circuit semantics to encode the model in Symbolic Transition

Systems 19;
4. Generate model and call specific symbolic model-checkers, we used mostly:

– nuXmv to use BDD model-checking.
– Prover PSL to use SAT model-checking (both bounded and induction based).

19
Symbolic representation of mealy machines used as a generic representation among
tool input formats43



Verification methodology

Global methodology:
1. Translation of CCSL requirements into Esterel;
2. Translation of PsyC into Esterel;

3. Re-use Esterel circuit semantics to encode the model in Symbolic Transition
Systems 19;

4. Generate model and call specific symbolic model-checkers, we used mostly:
– nuXmv to use BDD model-checking.
– Prover PSL to use SAT model-checking (both bounded and induction based).

19
Symbolic representation of mealy machines used as a generic representation among
tool input formats43



Verification methodology

Global methodology:
1. Translation of CCSL requirements into Esterel;
2. Translation of PsyC into Esterel;
3. Re-use Esterel circuit semantics to encode the model in Symbolic Transition

Systems 19;

4. Generate model and call specific symbolic model-checkers, we used mostly:
– nuXmv to use BDD model-checking.
– Prover PSL to use SAT model-checking (both bounded and induction based).

19
Symbolic representation of mealy machines used as a generic representation among
tool input formats43



Verification methodology

Global methodology:
1. Translation of CCSL requirements into Esterel;
2. Translation of PsyC into Esterel;
3. Re-use Esterel circuit semantics to encode the model in Symbolic Transition

Systems 19;
4. Generate model and call specific symbolic model-checkers, we used mostly:

– nuXmv to use BDD model-checking.
– Prover PSL to use SAT model-checking (both bounded and induction based).

19
Symbolic representation of mealy machines used as a generic representation among
tool input formats43



Benchmarks: use-cases

Multiple PsyC use-cases (or adapted from the litterature):
• LED: Basic LED controller with two blinking modes
• ABS: Automotive Anti-Lock Braking system with two modes
• ROSACE: Longitudinal flight controller with only periodic tasks
• LGS: Simplified landing gears controller with auxiliary tasks
• POWER: Automotive powertrain controller with multiple source clocks

Use-cases #agents #clocks #sources #decisions #advance
LED 1 3 1 1 8
ABS 8 4 1 9 30

ROSACE 9 3 1 0 9
LGS 5 3 1 1 16

POWER 3 8 2 1 9

44



Benchmarks: results

LED
1

LED
2

LED
3

A
B
S1

A
B
S2

A
B
S3

A
B
S4

A
B
S5

A
B
S6

A
B
S7

LG
S1

LG
S2

LG
S3

LG
S4

LG
S5

R
O
S1

R
O
S2

PO
W

ER
101

102

103

104

105

106

107

Use-case and Requirements

V
er

ifi
ca

ti
on

ti
m

e
(m

s)
BDD
BMC
IND

multi-source

long duration
mode

45



Benchmarks: results

LED
1

LED
2

LED
3

A
B
S1

A
B
S2

A
B
S3

A
B
S4

A
B
S5

A
B
S6

A
B
S7

LG
S1

LG
S2

LG
S3

LG
S4

LG
S5

R
O
S1

R
O
S2

PO
W

ER
101

102

103

104

105

106

107

Use-case and Requirements

V
er

ifi
ca

ti
on

ti
m

e
(m

s)
BDD
BMC
IND

multi-source

long duration
mode

45



Benchmarks: results

LED
1

LED
2

LED
3

A
B
S1

A
B
S2

A
B
S3

A
B
S4

A
B
S5

A
B
S6

A
B
S7

LG
S1

LG
S2

LG
S3

LG
S4

LG
S5

R
O
S1

R
O
S2

PO
W

ER
101

102

103

104

105

106

107

Use-case and Requirements

V
er

ifi
ca

ti
on

ti
m

e
(m

s)
BDD
BMC
IND

multi-source

long duration
mode

45



Outline

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case

46



Mono-source: long duration problem

Considering a basic periodic task example:

Task period 1 s 10 s 100 s 1000 s
#State vars 37 37 37 37
#States 42 402 4002 40002
Diameter 20 200 2000 20000

The state-space grows (linearly) with respect to the task period with, however, the
same structure.

. Industrial use-cases often have long durations.

. We want to optimize the state-space for the mono-source scenario.

47



Mono-source: long duration problem

Considering a basic periodic task example:

Task period 1 s 10 s 100 s 1000 s
#State vars 37 37 37 37
#States 42 402 4002 40002
Diameter 20 200 2000 20000

The state-space grows (linearly) with respect to the task period with, however, the
same structure.

. Industrial use-cases often have long durations.

. We want to optimize the state-space for the mono-source scenario.

47



Optimization methodology

Solution: use a scheduler to jump only on instants in which at least an agent is in a
global state

• Agents are now triggered by the scheduler and outputs their state to the scheduler
• The scheduler jumps multiple synchronous instants at once, denoted by ∆

Scheduler

Agent A

Agent B

durationA

durationB

clockA

clockB

∆

48



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Optimization methodology: example
Example of an execution with the scheduler:

GNC

HM
0 30 60 90

0 40 50 80 100
Agent states

(offset inside interval)

[
0
0

] [
0
30

] [
10
0

] [
20
0

] [
0
10

] [
20
0

] [
0
10

]
∆ = 30 ∆ = 10

∆ = 10
∆ = 10 ∆ = 20 ∆ = 10

. Define a new notion of instant by abstracting durations

. Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks20)

20
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.49



Benchmarks: a (simplified) Landing Gears System

LG
S1

LG
S2

LG
S3

LG
S4

LG
S5

102

103

104

105

106

107

Requirements

V
er

ifi
ca

ti
on

ti
m

e
(m

s)
Prover nuXmv verification time

Explicit Counter
Optimization

LG
S1

LG
S2

LG
S3

LG
S4

LG
S5

102

103

Requirements

V
er

ifi
ca

ti
on

ti
m

e
(m

s)

Prover PSL verification time

Explicit Counter
Optimization

. Use-case: 5 tasks, long durations (×50), aperiodic timing constraints and 1 source

. Doesn’t work with nuXmv using BDD model-checking

. Up to 95% speed-up with SAT model-checking using Prover PSL
50



Outline
1. General context

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET
2.2 PsyC overview as an sLET formalism

3. PsyC Language and Semantics
3.1 PsyC native (big-step) semantics
3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case

5. Conclusion and Perspectives
51



Conclusion and Perspectives

Two main contributions:
• Formal foundations for the PsyC language with two formally equivalent

semantics based on a new formalism, synchronous Logical Execution Time:
– A native “big-step” semantics, used mainly for compilation.
– A synchronous “small-step” semantics, now used for verification.

• Formal verification methodology for PsyC based on symbolic model-checking:
– A general multi-source case based on the direct use of the synchronous semantics.
– An optimization for the mono-source case based on abstracting the durations using

the native semantics.

52



Conclusion and Perspectives

Perspectives:
• Transform the PsyC verification prototype in an industrial product candidate to

help the design of PsyC programs (only during logical time phase)
• Extending semantics and verification methodology to PsyC null-latency

communication by introducing “fractional clocks”
• Compositional model-checking through contracts on external C functions verified

separately

53



Thank you

Thank you for your attention!

54



References I
Charles André. Syntax and semantics of the clock constraint specification
language (CCSL). Tech. rep. INRIA, 2009.
Charles André. Verification of clock constraints: CCSL Observers in Esterel.
Tech. rep. INRIA, 2010.
Christophe Aussagues and Vincent David. “A method and a technique to model
and ensure timeliness in safety critical real-time systems”. In: ICECCS. 1998.
Albert Benveniste et al. “The Synchronous Languages 12 Years Later”. In:
Proceedings of the IEEE 91 (2003).
Damien Chabrol et al. “Freedom from interference among time-triggered and
angle-triggered tasks: a powertrain case study”. In: ERTS. 2014.
Adrian Curic. “Implementing Lustre programs on distributed platforms with
real-time constrains”. PhD thesis. Université Joseph Fourier, Grenoble, France,
2005.

55



References II
Nico Feiertag et al. “A compositional framework for end-to-end path delay
calculation of automotive systems under different path semantics”. In: RTSS.
2009.
Arkadeb Ghosal et al. “Event-Driven Programming with Logical Execution
Times”. In: International Workshop on Hybrid Systems: Computation and
Control. Vol. 2993. 2004, pp. 357–371.
Christoph Kirsch and Ana Sokolova. “The Logical Execution Time Paradigm”.
In: Advances in Real-Time Systems. 2012.
Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Communications ACM (1978).
Edward A Lee and Marten Lohstroh. “Generalizing Logical Execution Time”. In:
Principles of Systems Design: Essays Dedicated to Thomas A. Henzinger on the
Occasion of His 60th Birthday. Springer, 2022, pp. 160–181.

56



References III
Marten Lohstroh et al. “Toward a Lingua Franca for deterministic concurrent
systems”. In: ACM Transactions on Embedded Computing Systems (TECS) 20.4
(2021), pp. 1–27.
Stéphane Louise et al. “The OASIS kernel: A framework for high dependability
real-time systems”. In: HASE. IEEE. 2011.
Marie-Agnès Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock
Automotive Systems: The Timing Augmented Description Language V2”. In:
IEEE 17th ICECCS. 2012.
Fabien Siron et al. Formal Semantics of the PsyC language. Research Report.
INRIA Sophia Antipolis - Méditerranée (France), 2022.
Fabien Siron et al. “Semantics fondations of PsyC based on synchronous Logical
Execution Time”. In: TCRS 2023. San Antonio, Texas, U.S.A., May 2023.
Fabien Siron et al. “The synchronous Logical Execution Time paradigm”. In:
ERTS 2022 - Embedded Real Time Systems. Toulouse, France, June 2022.

57



References IV

Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks
for synchronous programming”. In: FDL. IEEE. 2017.

58



Algorithm of the optimization methodology

Algorithm 1 Scheduler
1: procedure Schedule(Durationag1 , Stateag1 . . . Durationagn , Stateagn)
2: Remainingagi ← Durationagi − Stateagi ∀i ∈ [1 ; n]
3: ∆← min(Remainingag1 , . . . , Remainingagn)

4: NewStateagi ←

{
0, if ∆ = Remainingagi

Stateagi +∆, otherwise
∀i ∈ [1 ; n]

5: return ∆,NewStateag1 , . . . NewStateagn

6: end procedure

59



Equivalence criterion proof sketch
Theorem (equivalence)
Assuming source clock always present (no stuttering),

Ag===⇒n×sAg ′ iff P0−−�P1 . . . −−� Pn︸ ︷︷ ︸
n times

assuming Ag ≈ P0, we have Ag ′ ≈ Pn (term and data equivalence)

Proof.
By structural induction on ===⇒ definition.
• Instantaneous statements: trivial equivalence.
• Temporal statement (advance): by induction on the interval duration.
• Sequential composition: by the induction hypothesis.

60


	General context
	Synchronous Logical Execution Time (sLET)
	Towards synchronous LET
	PsyC overview as an sLET formalism

	PsyC Language and Semantics
	PsyC native (big-step) semantics
	PsyC synchronous (small-step) semantics
	Semantics equivalence criteria

	Formal Verification for synchronous LET
	Modeling requirements in CCSL
	Formal Verification: general case
	Formal Verification: mono-source case

	Conclusion and Perspectives
	References
	Appendix

