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@ Safety-critical real-time systems

In this work, we consider systems that are:
e Safety-critical: failure may have an impact on the system’s safety

¢ Real-time (and time-safety): system’s correctness (and thus its overall safety)
depends on a set of timing constraints

Typical example in the avionics domain: the control
system of an aircraft engine (FADEC)
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&) Formal design for real-time systems

Multiform Logical Time: Deal with a formal abstraction of time through logical
timing constraints dictated by high-level requirements and independant from
hardware platform.
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&) Formal design for real-time systems

Multiform Logical Time: Deal with a formal abstraction of time through logical
timing constraints dictated by high-level requirements and independant from
hardware platform.

Typical methodology:
1. Logical Time Design: Specification & Requirements
— Refine timing requirements to produce a program based only on logical time
constraints.
2. Physical Time Design: Implementation
— Add physical time platform provisions (e.g., WCET) and ensure that logical time
constraints can be satisfied.

> We focus on the Logical Time Design phase.
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&) Formal design for real-time systems

Logical timing constraints rely on logical clocks to express time.
® Sequence of specific instants to abstract a specific time base.
® Used to replace physical dates by logical sequencing.!
#0 #1 o #2 #3 #4  #5
| | |

Logical clock | ‘ ‘ ‘ } } >

Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed Asterios Technologies
! System”. In: Communications ACM (1978). seledesanneatine
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&) Formal design for real-time systems

Logical timing constraints rely on logical clocks to express time.
® Sequence of specific instants to abstract a specific time base.
e Used to replace physical dates by logical sequencing.?

#0 #1  #2 #3 #4  #5
| | |

Logical clock | ‘ ‘ ‘ ‘

L 2

Two main cases of multi-clock systems:
1. Mono-Source: all logical clocks are derived from a unique global clock source.

2. Multi-Source: logical clocks might rely on multiple independant clock sources.

> In practice, most industrial systems fall in the first category due to safety
considerations. However, the second one has also interesting use-cases (e.g.,
automotive Powertrain [5]).

Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed Asterios Technologies

1 System”. In: Communications ACM (1978).



@ Industrial Context

ASTERIOS technology:
e Software tool suite dedicated to the design and integration of safety-critical
systems
® Created by the CEA research institute 2 (from 90's to 2011, formerly Oasis®):
> Used for modern nuclear plant control systems
® Produced by the KRONO-SAFE company (since 2011):
> Now renamed ASTERIOS TECHNOLOGIES due to the takeover by SAFRAN in 2023.

2 French Alternative Energies and Atomic Energy Commission
Stéphane Louise et al. “The OASIS kernel: A framework for high dependability
3 real-time systems”. In: HASE. IEEE. 2011.

Asterios Technologies
Safe design in real-time



@ Industrial Context
ASTERIOS technology:

e Software tool suite dedicated to the design and integration of safety-critical
systems

® Created by the CEA research institute 2 (from 90's to 2011, formerly Oasis®):
> Used for modern nuclear plant control systems

® Produced by the KRONO-SAFE company (since 2011):
> Now renamed ASTERIOS TECHNOLOGIES due to the takeover by SAFRAN in 2023.

The PsyC language:
e Parallel SYnchronous dialect of the C language

® Fully integrated compilation with an in-house real-time kernel

2 French Alternative Energies and Atomic Energy Commission

Stéphane Louise et al. “The OASIS kernel: A framework for high dependability Asterios Technologies
3 real-time systems”. In: HASE. IEEE. 2011. e



@ Problem statement

Objectives:

1. Define semantics foundations for the PsyC language based on existing
logical time approaches.
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@ Problem statement

Objectives:

1. Define semantics foundations for the PsyC language based on existing
logical time approaches.

2. Define a formal verification methodology for the PsyC language based on
the defined semantics foundations.
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%) Proposed Methodology: contributions

CCSL encoding of
timing requirements
— Synchronizations.
— Causality.
— Latencies (including end-to- end)

Synchronous Semantics
— Synchronous expansion of durations. —  Verification: multi-source case
— Translation to ESTEREL. — Symbolic circuit encoding.
— Yield a “small-step” operational — Symbolic model-checking. 4.2
semantics. 3.2 :

Synchronous Logical
Execution Time
program in PsyC.

Observational
equivalence 3.3

p I\tl.altlvefiem?ntucs 7 Verification: mono-source case
7 Treservation ? dura |<?'ns. - — Timed abstraction using durations.
— Defined as a “big-step” operational . )

. — Symbolic model-checking. 4.3
semantics. 3.1 b
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%) Outline

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET
2.2 PsyC overview as an sLET formalism

Asterios Technologies
Safe design in real-time



%) Outline

2. Synchronous Logical Execution Time (sLET)
2.1 Towards synchronous LET

Asterios Technologies
Safe design in real-time



) The Synchronous-Reactive approach
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Figure: Synchronous-Reactive approach*

> Each reaction is triggered by the instants of a logical clock
> Synchronous communication model

Albert Benveniste et al. “The Synchronous Languages 12 Years Later”. In: Pro-
* ceedings of the IEEE 91 (2003).
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Figure: Synchronous-Reactive approach®

> Each reaction is triggered by the instants of a logical clock
> Synchronous communication model

> The synchronous hypothesis states that each computation should terminate
before the next tick of a global base clock

Albert Benveniste et al. “The Synchronous Languages 12 Years Later”. In: Pro- Asterios Technologies
> ceedings of the IEEE 91 (2003). Safedesgn nreakime
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Figure: Synchronous-Reactive approach®

> Each reaction is triggered by the instants of a logical clock
> Synchronous communication model

> The synchronous hypothesis states that each computation should terminate
before the next tick of a global base clock

Albert Benveniste et al. “The Synchronous Languages 12 Years Later”. In: Pro- Asterios Technologies
11 8 ceedings of the IEEE 91 (2003). S



-£) The Logical Execution Time approach
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Figure: Logical Execution Time approach’

> Computation is abstracted by a specified constant duration based on a unique
chronometrical time base (no multiple logical clocks)

> Delayed communication model

Christoph Kirsch and Ana Sokolova. “The Logical Execution Time Paradigm”. In: Asterios Technologies
12 T Advances in Real-Time Systems. 2012. Sefedesnnestme
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Figure: Logical Execution Time approach®

> Computation is abstracted by a specified constant duration based on a unique
chronometrical time base (no multiple logical clocks)

> Delayed communication model

> Real-time analysis based on preemptive scheduling

Christoph Kirsch and Ana Sokolova. “The Logical Execution Time Paradigm”. In: Asterios Technologies
13 8 Advances in Real-Time Systems. 2012. oefedesnineare



%) A synchronous generalization of LET

14

Synchronous-Reactive ‘ Logical Execution Time

Modeling Logical clocks Logical intervals

Communication Synchronous Delayed

Implementation | Synchronous hypothesis | Relaxed synchronous hypothesis®
Languages ESTEREL, LUSTRE GiorTO, TDL

PsyC
Synchronous LET extends LET with logical clock synchronisation
Adrian Curic. “Implementing Lustre programs on distributed platforms with real- Asterios Technologies

Safe design

° time constrains”. PhD thesis. Université Joseph Fourier, Grenoble, France, 2005.



%) A synchronous generalization of LET
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Figure: Synchronous Logical Execution Time approach

> Both computation triggering and duration instants are modeled respectively to
logical clock ticks

> Communication is delayed similarly to LET
> Published at ERTS 202210

Fabien Siron et al. “The synchronous Logical Execution Time paradigm”. In: Asterios Technologies
15 10 ERTS 2022 - Embedded Real Time Systems. Toulouse, France, June 2022. L
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%) A synchronous generalization of LET

Related formalisms:
1. XGI0TTO [8] extends LET with events :

— In principle, both triggering and duration can be modeled by events;
— However, in practice, XGIOTTO relies on event scoping to encode implicitely
inter-arrival time.

Edward A Lee and Marten Lohstroh. “Generalizing Logical Execution Time". In:
Principles of Systems Design: Essays Dedicated to Thomas A. Henzinger on the Asterios Technologies
1 Occasion of His 60th Birthday. Springer, 2022, pp. 160-181.
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%) A synchronous generalization of LET

Related formalisms:
1. XGI0TTO [8] extends LET with events :

— In principle, both triggering and duration can be modeled by events;

— However, in practice, XGIOTTO relies on event scoping to encode implicitely
inter-arrival time.

2. LINGUA FRANCA [12] is based on a multiform logical time framework called
Tagged Signal Model :
— Actors computations are triggered by logical tags

— LET can be modeled using delays between dataflow actors!®:
a.out -> b.in after X ms

— However, those delays rely on a chronometrical time base, not tags.

Edward A Lee and Marten Lohstroh. “Generalizing Logical Execution Time". In:

Principles of Systems Design: Essays Dedicated to Thomas A. Henzinger on the Asterios Technologies
1 Occasion of His 60th Birthday. Springer, 2022, pp. 160-181. S desammeatme
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%) Outline

2. Synchronous Logical Execution Time (sLET)

2.2 PsyC overview as an sLET formalism
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&) PsyC overview: clocks

PsyC defines two types of clocks:
source realtime;

clock c20 = 20 * realtime;
> clock, which are periodically refined clock c50 = 50 * realtime;

clocks (with period and offset) clock 4020 = 2 x ¢c20 + 1;

> source, which are source clocks

realtime  HHHHHHHHHHHHHH T
c20 } } } } ; ; >
c50 } | } >

c40_20 } } } >
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&) PsyC overview: synchronization

PsyC defines a dedicated synchronization

statement: source realtime;

) clock c20 = 20 * realtime;
> advance awaits for a specified number clock ¢50 = 50 * realtime:

of clock ticks

realtime  HHHHHHHHHHHHHHHHHH T T

c20 } ; ; ; 1 1 >
c50 | 1 1 >
GNC Task | )
advance 2
with c20
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&) PsyC overview: synchronization

PsyC defines a dedicated synchronization

statement: source realtime;

clock c20 = 20 * realtime;

> advance awaits for a specified number clock c50
of clock ticks

50 * realtime;
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&) PsyC overview: agents

A PsyC agent defines:
® a task name;
® inputs (consult) and outputs (display);

® 3 looping body containing C code
extended with advance statements.

c20 | ‘ ‘ ‘ . . >
c50 b 1 1 >
GNC(sensors) GNC(sensors)
GNC
0 40 50 80 100

> Hypothesis: all execution paths should
be constrained by an advance.

source realtime;

clock c20 = 20 * realtime;
clock ¢cb0 = 50 * realtime;
agent GNC {

consult sensors, mode;

display order;

body {
if (mode == NOMINAL) {
order = GNC(sensors);
advance 2 with c20;
}

advance 1 with c50;
}
}

Asterios Technologies



&) PsyC overview: communication

PsyC inter-task communication is done

through dedicated temporal variables: ,
temporal float order = 0.0f with c20;

® One writer but multiple possible readers;

e Data is persistent; agent GNC { ¥

agent FAST { ¥
® Values are sampled according to a clock.
20 | : : : : : >
GNC(sensors) GNC(sensors)
e | — 1 : >
order F : T T T } >

IV R R RN R

Asterios Technologies



%) Outline

3. PsyC Language and Semantics

3.1 PsyC native (big-step) semantics

3.2 PsyC synchronous (small-step) semantics
3.3 Semantics equivalence criteria

A

sterios Technologies
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3. PsyC Language and Semantics
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%) Native (or big-step) Semantics
Based on structural operational semantics approach, for individual agents:
E, a8 = nwiths El? ag/

with ag, ag’ agent term, E, E’ environments and n X s logical duration (extended on
source clock).

Fabien Siron et al. Formal Semantics of the PsyC language. Research Report. Asterios Technologies
2 INRIA Sophia Antipolis - Méditerranée (France), 2022.



£ Native (or big-step) Semantics

Based on structural operational semantics approach, for individual agents:
E,ag == puitns E', 28’
with ag, ag’ agent term, E, E’ environments and n X s logical duration (extended on
source clock).
For individual agents, very classical rules but temporal rule for advance statement!?:
E,advance n with ¢ == ,11(c)—d. with Source(c) E;nothing

Where d. denotes the corresponding clock state according to its period and II(c¢) its
absolute period.

Fabien Siron et al. Formal Semantics of the PsyC language. Research Report. Asterios Technologies
2 INRIA Sophia Antipolis - Méditerranée (France), 2022.



%) Native (or big-step) Semantics
Classical synchronous composition cannot be used directly as agents do not have a
common projection.

> Hence, we consider global states, for synchronization, along with intermediate
states, due to the projection of global states from other agents.

(Christophe Aussagues and Vincent David. “A method and a technique to model Asterios Technologies
25 3 and ensure timeliness in safety critical real-time systems”. In: /CECCS. 1998) oefedesnineare



£ Native (or big-step) Semantics

Classical synchronous composition cannot be used directly as agents do not have a

25

common projection.

> Hence, we consider global states, for synchronization, along with intermediate

states, due to the projection of global states from other agents.

Then, agent composition can be split in two cases:

1. Mono-Source: Ge Fﬂs;ms
> Every transition is now a partial interval generated Fast!

by the agent projection. At each state, 0ms || 10ms
Nprogram = min(Nag, , Nag,, .. .), similar to Oasis Fast?

synchronized product |} 10ms
GNC'  Fast®

2. Multi-Source:
> More complex due to multiple source interleaving

(Christophe Aussagues and Vincent David. “A method and a technique to model
3 and ensure timeliness in safety critical real-time systems”. In: /CECCS. 1998)

[GNC, Fast]

ﬂ 10ms

[GNC @20, Fast]

ﬂ 10ms

[GNC @10, Fast]

ﬂ 10ms

[GNC,Fast]

Asterios Technologies

Safe desi



%) Outline

3. PsyC Language and Semantics

3.2 PsyC synchronous (small-step) semantics

A

sterios Technologies
nin real-time
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%) Synchronous (or small-step) Semantics

A simpler semantics can be defined by translation to a Synchronous-Reactive
language, ESTEREL. Translation principle:

e All control statements can be translated with similar constructs in ESTEREL

® advance statement is translated by the ESTEREL synchronization statement
followed by the display of temporal variables.

private_variable := f(...);

await n c;
emit temporal (private_variables);

Asterios Technologies
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%) Synchronous (or small-step) Semantics

A simpler semantics can be defined by translation to a Synchronous-Reactive
language, ESTEREL. Translation principle:

e All control statements can be translated with similar constructs in ESTEREL

® advance statement is translated by the ESTEREL synchronization statement
followed by the display of temporal variables.

private_variable := f(...);

await n c;
emit temporal (private_variables);

> Durations are not preserved in the semantics as ESTEREL yields atomic semantics
transitions:

Out , ,
p, data f» p', data
n

Asterios Technologies

Safe desi



%) Synchronous (or small-step) Semantics

A simpler semantics can be defined by translation to a Synchronous-Reactive
language, ESTEREL.

Example:

body {
if (mode == NOMINAL) {
orders = GNC_step(sensors);
advance 2 with c20;

loop

¥
advance 1 with c50;

} end loop

PsyC agent example ESTEREL agent translation

Safe desig|
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%) Synchronous (or small-step) Semantics

A simpler semantics can be defined by translation to a Synchronous-Reactive

language, ESTEREL.

Example:
body {
if (mode == NOMINAL) {
orders = GNC_step(sensors);

advance 2 with c20;
¥

advance 1 with c50;

}

PsyC agent example

loop
if ?mode = NOMINAL then

end if;
await 1 cb50;
end loop

ESTEREL agent translation

Asterios Technologies
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%) Synchronous (or small-step) Semantics

A simpler semantics can be defined by translation to a Synchronous-Reactive

language, ESTEREL.

Example:
body {
if (mode == NOMINAL) {
orders = GNC_step(sensors);

advance 2 with c20;
¥

advance 1 with c50;

}

PsyC agent example

loop
if ?mode = NOMINAL then
private_orders := GNC_step(?sensors);

await 2 c20;
emit orders(private_orders);
end if;
await 1 cb50;
end loop

ESTEREL agent translation

Asterios Technologies

Safe design in real-time



%) Outline

3. PsyC Language and Semantics

3.3 Semantics equivalence criteria

A

sterios Technologies
nin real-time
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£ Equivalence relation

Theorem (equivalence)

Assuming source clock always present (no stuttering), for individual agents:

Ag=—=,xsAg iff P'—sPl .. — P"

n times

assuming Ag ~ P°, we have Ag’ ~ P" (term and data equivalence)

Both semantics are observationally equivalent on the interval boundaries at the agent
level.

> All properties depending only on (global) states in the synchronous semantics is
preserved on the native semantics. Published in TCRS 2023'4.

s Technologies

esign in real-time

Fabien Siron et al. “Semantics fondations of PsyC based on synchronous Logical Asterio
1 Execution Time”. In: TCRS 2023. San Antonio, Texas, U.S.A., May 2023.



%) Outline

4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
4.2 Formal Verification: general case
4.3 Formal Verification: mono-source case
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4. Formal Verification for synchronous LET
4.1 Modeling requirements in CCSL
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@ Specifying requirements: motivation

Motivation for verification activities:
® PsyC allows for the modeling of timing constraints inside agents.

® However, high-level timing requirements also concern timing constraints across
multiple agents (e.g., synchronizations, latencies ...).
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® Clock Constraint Specification Language: constraint predicates between clocks

Asterios Technologies



@ Specifying requirements: motivation

Motivation for verification activities:
® PsyC allows for the modeling of timing constraints inside agents.

® However, high-level timing requirements also concern timing constraints across
multiple agents (e.g., synchronizations, latencies ...).

Multiple possible formalisms to specify those timing requirements:
e Temporal Logic: convential logic with temporal operators (next, always ...)
¢ Contracts and Observers: predicates on assumptions (“assume”) and guarantees

® Clock Constraint Specification Language: constraint predicates between clocks

Asterios Technologies
Safe design in real-time



£ Clock Constraint Specification Language
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£ Clock Constraint Specification Language

CCSL is a specification language based on clock constraints!®:

® A CCSL clock is (still) a sequence of ticks (or instants);

® CCSL constraints (or relations) constrain the tick occurence between multiple
clocks:

— e.g. isPeriodicOn, (precedes) ..

e CCSL expressions build new clocks from existing ones:
— e.g. sampledOn, DelayFor ..

Charles André. Syntax and semantics of the clock constraint specification language Asterios Technologies
37 15 (CCSL). Tech. rep. INRIA, 2009. seledesanneatine



£ Specifying requirements: basic timing requirements

Description of basic timing requirements inspired from TADL2® and AUTOSAR
timing extensions:
® Repetition requirement: period between successive instants
— c isPeriodicOn realtime period n  where n € N*x (Periodicity)

Marie-Agnés Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock Au-
tomotive Systems: The Timing Augmented Description Language V2". In: IEEE Asterios Technologies
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£ Specifying requirements: basic timing requirements

Description of basic timing requirements inspired from TADL2® and AUTOSAR
timing extensions:
® Repetition requirement: period between successive instants
— c isPeriodicOn realtime period n  where n € N*x (Periodicity)
¢ Synchronization requirements: temporal invariants
- ¢ [=] e (Synchronization)

- ¢ (Exclusion)

e Causality requirements: causal instant relations

- ¢ (Alternation)

Marie-Agnés Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock Au-

tomotive Systems: The Timing Augmented Description Language V2". In: IEEE Asterios Technologies
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£ Specifying requirements: basic timing requirements

Description of basic timing requirements inspired from TADL2® and AUTOSAR
timing extensions:
® Repetition requirement: period between successive instants
— c isPeriodicOn realtime period n  where n € N*x (Periodicity)
¢ Synchronization requirements: temporal invariants
- ¢ [=] e (Synchronization)
- ¢ (Exclusion)
e Causality requirements: causal instant relations
- ¢ (Alternation)
¢ Delay requirements: delay between stimuli and response clocks
— response (stimuli isDelayedFor n on realtime) where n € N* (Delay)

Marie-Agnés Peraldi-Frati et al. “A Timing Model for Specifying Multi Clock Au-

tomotive Systems: The Timing Augmented Description Language V2". In: |EEE Asterios Technologies
16 17th ICECCS. 2012. S designin ek



£) Specifying requirements: end-to-end requirements

GNC(sensors) GNC(sensors)
GNC — t - 1 ; >
L \ Y .% Y \

order ‘ >

SRS JECE S 25 S

Delay between two instants across a functional chain of specific task instants
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® First, specify muItipIe propagation paths, function chains:

pdlsplay pconsult Causallty)
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GNC(sensors) GNC(sensors)
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order ‘ >

SRS JECE S 25 S

Delay between two instants across a functional chain of specific task instants
pl, p%, ..., p" for tasks t!, t2, ..., t" where p’ subclock t':

® First, specify muItipIe propagation paths, function chains:

pdlsplay pconsult Causallty)

i+1 - .
~ Pronsult - (pdlsp,aysampledOn tc’,,sp,ay) (Consistency)

- plcjnlsult (pdlsplaysampledon tconsult) (FirStN)

Nico Feiertag et al. “A compositional framework for end-to-end path delay calcu- Asterios Technologies
7 Jation of automotive systems under different path semantics”. In: RTSS. 2000.
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£) Specifying requirements: end-to-end requirements

GNC(sensors) GNC(sensors)
GNC — t + 1 ; >
L \ Y .% Y \

order ‘ >

SOSNUR £ E JCN 15 S

Delay between two instants across a functional chain of specific task instants
pl, p%, ..., p" for tasks t!, t2, ..., t" where p’ subclock t':

® First, specify muItipIe propagation paths, function chains:

pd’sp/ay pconsult Causa“tY) .
- plc;Lnlsult - (pdlsplaysampledon tclilsp/ay) (Consistency)
= Pl | 5| (Plispiaysampledon t11 ) (First'?)

® Then, use delay requirements on individual data propagation

Nico Feiertag et al. “A compositional framework for end-to-end path delay calcu- Asterios Technologies
7 Jation of automotive systems under different path semantics”. In: RTSS. 2000. !



&) Synchronous observer based verification

CCSL can be used to model synchronous

Written in the same language

18.
Program Property Observer observers .
adaptors | [ 1ot oSt generaors ® CCSL expressions are translated to
i I"“L reestensene | viation ESTEREL (generators);
L3
: 20 >
Ld
E A }__l_
(
veritier CCSL specification
;- Legend:
In the program:  TimeRelatedElement
In the observer:  CCSL adaptor CCSL generator CCSL observer @

(Charles André. Verification of clock constraints: CCSL Observers in Esterel. Asterios Technologies
18 Tech. rep. INRIA, 2010)
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&) Synchronous observer based verification

Written in the same language

Program Property Observer

Adaptors Tree of CCSL generators

T / CCSL observer
D S——L Violation

>

.

: [ INES

.

i A T
Chosen by the Automated
verifier generation ‘_From‘
CCSL specification
- Legend:

In the program:  TimeRelatedElement
In the observer:  CCSL adaptor CCSL generator CCSL observer @

CCSL can be used to model synchronous

observers 18:

® CCSL expressions are translated to
ESTEREL (generators);

® CCSL constraints are translated to
ESTEREL (observers);

® \/erification can be performed on
the composition of an ESTEREL
program and a set of translated
CCSL expressions/constraints.

(Charles André. Verification of clock constraints: CCSL Observers in Esterel. Asterios Technologies

18 Tech. rep. INRIA, 2010)
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&) Synchronous observer based verification

CCSL can be used to model synchronous

Written in the same language

18.
Program Property Observer observers .
ngaptors | | 1o orccss ® CCSL expressions are translated to
ree of generators
i i”l reestensene | viation ESTEREL (generators);
: Line ccsL i lated
° [ ]
[ wwin constraints are translatea to
ESTEREL (observers);
‘Auomaed . p .
0“058”;;{‘;;‘# generaton from ® Verification can be performed on
CCSL specification L.
 Legend: the composition of an ESTEREL
i In the program:  TimeRelatedElement
In the observer: CCSLadaptor CCSL generator CCSL observer @ program and a set Of translated

CCSL expressions/constraints.

> This strategy can be used for both assume and guarantee patterns

(Charles André. Verification of clock constraints: CCSL Observers in Esterel. Asterios Technologies
18 Tech. rep. INRIA, 2010)
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4. Formal Verification for synchronous LET

4.2 Formal Verification: general case

A
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&) Verification techniques

Overview of verification techniques:

Enumerative: explicit computation/traversal of the state-space

Timed Automata (TA): encoding of real-time constraints in automata using
watches (called “clocks”)

Binary Decision Diagram (BDD): symbolic encoding of set of states using
BDD data structures

Bounded Model-Checking (BMC): symbolic (and bounded) unfolding of the
state-space using SAT solvers

K-Induction and Interpolation: techniques to solve the completeness issue of
BMC using SAT solvers

Asterios Technologies
Safe design in real-time



&) Verification methodology

Global methodology:
1. Translation of CCSL requirements into ESTEREL;

Symbolic representation of mealy machines used as a generic representation among Asterios Technologies
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&) Verification methodology

Global methodology:

1. Translation of CCSL requirements into ESTEREL;
2. Translation of PsYC into ESTEREL;
3. Re-use ESTEREL circuit semantics to encode the model in Symbolic Transition
Systems 1°;
4. Generate model and call specific symbolic model-checkers, we used mostly:
— NUXMV to use BDD model-checking.
— PROVER PSL to use SAT model-checking (both bounded and induction based).
Symbolic representation of mealy machines used as a generic representation among Asterios Technologies

23 19 tool input formats



@ Benchmarks: use-cases

Multiple PsYC use-cases (or adapted from the litterature):
LED: Basic LED controller with two blinking modes

ABS: Automotive Anti-Lock Braking system with two modes
ROSACE: Longitudinal flight controller with only periodic tasks

LGS: Simplified landing gears controller with auxiliary tasks

POWER: Automotive powertrain controller with multiple source clocks

Use-cases || #agents | #clocks | #sources | #decisions | #advance
LED 1 3 1 1 8
ABS 8 4 1 9 30

ROSACE 9 3 1 0 9
LGS 5 3 1 1 16

POWER 3 8 2 1 9

Asterios Technologies
Safe design in real-time



@ Benchmarks: results
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@ Benchmarks: results
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%) Outline

4. Formal Verification for synchronous LET

4.3 Formal Verification: mono-source case

Asterios Technologies
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-£) Mono-source: long duration problem

Considering a basic periodic task example:

Task period || 1s | 10s | 100 s | 1000 s
#State vars || 37 | 37 37 37

#States 42 | 402 | 4002 | 40002
Diameter 20 | 200 | 2000 | 20000

The state-space grows (linearly) with respect to the task period with, however, the

same structure.

Asterios Technologies



-£) Mono-source: long duration problem

Considering a basic periodic task example:

Task period || 1s | 10s | 100 s | 1000 s
#State vars || 37 | 37 37 37

#States 42 | 402 | 4002 | 40002
Diameter 20 | 200 | 2000 | 20000

The state-space grows (linearly) with respect to the task period with, however, the

same structure.

> Industrial use-cases often have long durations.

> We want to optimize the state-space for the mono-source scenario.

Asterios Technologies



-£) Optimization methodology

Solution: use a scheduler to jump only on instants in which at least an agent is in a
global state

® Agents are now triggered by the scheduler and outputs their state to the scheduler

® The scheduler jumps multiple synchronous instants at once, denoted by A

TurationA Agent A
clock A

clockB l

durationB

4 Scheduler

Agent B

Asterios Technologies



@ Optimization methodology: example

Example of an execution with the scheduler:

By — — — :
30 60 90
GNC } } } } }
40 50 80 100

~

~

Agent states 0
(offset inside interval) |0

Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks Asterios Technologies
20 for synchronous programming”. In: FDL. IEEE. 2017. Sl s



@ Optimization methodology: example

Example of an execution with the scheduler:

HM — —_— _ : 3
30 60 90
GNC 1 1 1 1 1 >
40 50 80 100
Agent states 0 0
(offset inside interval) |0 30
A =30
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks Asterios Technologies
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@ Optimization methodology: example

Example of an execution with the scheduler:

HM — —_— _ : 3
30 60 90
GNC } } } ; } 3
40 50 80 100
Agent states 0 10
(offset inside interval)
A =30 A =10
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@ Optimization methodology: example

Example of an execution with the scheduler:
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GNC 1 1 1 1 1 >
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Agent states 0 0 N 10 R 20 N 0
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A =30 A =10 A =10
A =10
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@ Optimization methodology: example

Example of an execution with the scheduler:

HM — S _ ; 3
30 60 90
GNC 1 1 1 1 1 '
40 50 80 100
Agent states 0 0 N 10 R 20 N 0 20
(offset inside interval) |0 30 0 0 10 0
A =30 A =10 A =10 A =20
A =10
Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks Asterios Technologies
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@ Optimization methodology: example

Example of an execution with the scheduler:

HM — —_— —— : 3

30 60 90
GNC 1 1 1 1 1 ?

40 50 80 100
Agent states 0 0 N 10 R 20 N 0 20 R 0
(offset inside interval) |0 30 0 0 10 0 10
A =30 A =10 A =10 A =20 A =10
A =10

> Define a new notion of instant by abstracting durations

Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks Asterios Technologies
20 for synchronous programming”. In: FDL. IEEE. 2017. Sl s



@ Optimization methodology: example

Example of an execution with the scheduler:

HM — —_— —— : 3

0 30 60 90
GNC 1 1 1 ‘ 1 ?

40 50 100
Agent states 0 0 N 10 R 20 N
(offset inside interval) |0 30 0 0 10 10
A =30 A =10 A =10 =20 =10
A =10

> Define a new notion of instant by abstracting durations

> Equivalent to the native semantics product, but computed dynamically! (similar
to dynamic ticks??)

Reinhard Von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks Asterios Technologies
20 for synchronous programming”. In: FDL. IEEE. 2017. Sl s



£) Benchmarks: a (simplified) Landing Gears System

Verification time (ms)

Prover nuXmv verification time Prover PSL verification time
107 L T T T T ] T T T ml
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g ] = I ]
]
4L 4 5
10 E E S 102 - 4
[ ] = B 3
10% E E F ]
I | —=— Explicit Counter N : L ' .77 | —=—Explicit Counter |-
102 £|-*- Optimization 4 4 3 1Y -4-  Optimization |-
£ 1 1 1 1 1 B 1 1 1 1 1
> ¥ & ¢ > & > L
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Requirements Requirements

> Use-case: 5 tasks, long durations (x50), aperiodic timing constraints and 1 source

> Doesn’t work with NUXMV using BDD model-checking

> Up to 95% speed-up with SAT model-checking using PROVER PSL

Asterios Technologies
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5. Conclusion and Perspectives
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@ Conclusion and Perspectives

Two main contributions:
® Formal foundations for the PsYC language with two formally equivalent
semantics based on a new formalism, synchronous Logical Execution Time:
— A native "big-step” semantics, used mainly for compilation.
— A synchronous “small-step” semantics, now used for verification.
® Formal verification methodology for PSYC based on symbolic model-checking:

— A general multi-source case based on the direct use of the synchronous semantics.
— An optimization for the mono-source case based on abstracting the durations using
the native semantics.

Asterios Technologies
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@ Conclusion and Perspectives

Perspectives:

® Transform the PsyC verification prototype in an industrial product candidate to
help the design of PsYC programs (only during logical time phase)

® Extending semantics and verification methodology to PsyC null-latency
communication by introducing “fractional clocks”

e Compositional model-checking through contracts on external C functions verified
separately

Asterios Technologies
Safe design in real-time



%) Thank you

Thank you for your attention!
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&) Algorithm of the optimization methodology

Algorithm 1 Scheduler

1: procedure SCHEDULE(Duration,g,, State,g, ... Duration,s,, State,g,)
2: Remainingag, < Duration,g, — State,s, Vi€ [1; n]
3 A < min(Remainingag,, ..., Remaining,g,)

, if A = Remaining,g,
State,g, + A, otherwise
5: return A, NewState,g,, ... NewState,g,
6: end procedure

4: NewState,,, < Viell; n]

Asterios Technologies



) Equivalence criterion proof sketch

Theorem (equivalence)
Assuming source clock always present (no stuttering),

Ag==>pxsAg' iff P'—sP' ... — P"

n times
assuming Ag ~ P°, we have Ag’ ~ P" (term and data equivalence)

Proof.
By structural induction on == definition.

® |nstantaneous statements: trivial equivalence.
® Temporal statement (advance): by induction on the interval duration.
® Sequential composition: by the induction hypothesis.
O

Asterios Technologies
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